The plastid-encoded PsaI subunit stabilizes photosystem I during leaf senescence in tobacco
نویسندگان
چکیده
PsaI is the only subunit of PSI whose precise physiological function has not yet been elucidated in higher plants. While PsaI is involved in PSI trimerization in cyanobacteria, trimerization was lost during the evolution of the eukaryotic PSI, and the entire PsaI side of PSI underwent major structural remodelling to allow for binding of light harvesting complex II antenna proteins during state transitions. Here, we have generated a tobacco (Nicotiana tabacum) knockout mutant of the plastid-encoded psaI gene. We show that PsaI is not required for the redox reactions of PSI. Neither plastocyanin oxidation nor the processes at the PSI acceptor side are impaired in the mutant, and both linear and cyclic electron flux rates are unaltered. The PSI antenna cross section is unaffected, state transitions function normally, and binding of other PSI subunits to the reaction centre is not compromised. Under a wide range of growth conditions, the mutants are phenotypically and physiologically indistinguishable from wild-type tobacco. However, in response to high-light and chilling stress, and especially during leaf senescence, PSI content is reduced in the mutants, indicating that the I-subunit plays a role in stabilizing PSI complexes.
منابع مشابه
New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants.
In higher plants, the Ndh complex reduces plastoquinones and is involved in cyclic electron flow around photosystem I, supplying extra-ATP for photosynthesis, particularly under environmental stress conditions. Based on plastid genome sequences, the Ndh complex would contain 11 subunits (NDH-A to -K), but homologies with bacterial complex indicate the probable existence of additional subunits. ...
متن کاملY3IP1, a Nucleus-Encoded Thylakoid Protein, Cooperates with the Plastid-Encoded Ycf3 Protein in Photosystem I Assembly of Tobacco and Arabidopsis W OA
The intricate assembly of photosystem I (PSI), a large multiprotein complex in the thylakoid membrane, depends on auxiliary protein factors. One of the essential assembly factors for PSI is encoded by ycf3 (hypothetical chloroplast reading frame number 3) in the chloroplast genome of algae and higher plants. To identify novel factors involved in PSI assembly, we constructed an epitope-tagged ve...
متن کاملY3IP1, a Nucleus-Encoded Thylakoid Protein, Cooperates with the Plastid-Encoded Ycf3 Protein in Photosystem I Assembly of Tobacco and Arabidopsis mm
The intricate assembly of photosystem I (PSI), a large multiprotein complex in the thylakoid membrane, depends on auxiliary protein factors. One of the essential assembly factors for PSI is encoded by ycf3 (hypothetical chloroplast reading frame number 3) in the chloroplast genome of algae and higher plants. To identify novel factors involved in PSI assembly, we constructed an epitope-tagged ve...
متن کاملY3IP1, a nucleus-encoded thylakoid protein, cooperates with the plastid-encoded Ycf3 protein in photosystem I assembly of tobacco and Arabidopsis.
The intricate assembly of photosystem I (PSI), a large multiprotein complex in the thylakoid membrane, depends on auxiliary protein factors. One of the essential assembly factors for PSI is encoded by ycf3 (hypothetical chloroplast reading frame number 3) in the chloroplast genome of algae and higher plants. To identify novel factors involved in PSI assembly, we constructed an epitope-tagged ve...
متن کاملThe primary structure of a 4.0-kDa photosystem I polypeptide encoded by the chloroplast psaI gene.
Partial amino acid sequences have been determined for a 4.0-kDa photosystem I polypeptide from barley. A comparison with the sequence of the chloroplast genome of Nicotiana tabacum and Marchantia polymorpha identified the polypeptide as chloroplast-encoded. We designate the corresponding gene psaI and the polypeptide PSI-I. The barley chloroplast psaI gene was sequenced. The gene encodes a poly...
متن کامل